
Introduction to Computer Science:
Programming Methodology

Lecture 4 Function

Guiliang Liu

School of Data Science

Function Basics

Exercise

Imagine you need to calculate the area of multiple rectangles throughout
your program. Print the areas of the following rectangles.

10

5

7

3

12

8

Calculate area of rectangle 1

length1 = 10

width1 = 5

area1 = length1 * width1

print(f"Area of rectangle 1: {area1}")

Calculate area of rectangle 2

length2 = 7

width2 = 3

area2 = length2 * width2

print(f"Area of rectangle 2: {area2}")

Calculate area of rectangle 3

length3 = 12

width3 = 8

area3 = length3 * width3

print(f"Area of rectangle 3: {area3}")

A Python Script

Calculate area of rectangle 1

length1 = 10

width1 = 5

area1 = length1 * width1

print(f"Area of rectangle 1: {area1}")

Calculate area of rectangle 2

length2 = 7

width2 = 3

area2 = length2 * width2

print(f"Area of rectangle 2: {area2}")

Calculate area of rectangle 3

length3 = 12

width3 = 8

area3 = length3 * width3

print(f"Area of rectangle 3: {area3}")

A Python Script

Can we define a template and reuse it?

Same Pattern Applies!

def calculate_rectangle_area(length,width):

return length * width

Calculate area of rectangle 1

area1 = calculate_rectangle_area(10, 5)

print(f"Area of rectangle 1: {area1}")

Calculate area of rectangle 2

area2 = calculate_rectangle_area(7, 3)

print(f"Area of rectangle 2: {area2}")

Calculate area of rectangle 3

area3 = calculate_rectangle_area(12, 8)

print(f"Area of rectangle 3: {area3}")

A Better Solution

Stored (and reused) steps

Program Output

This reusable paragraph of code is usually called a function

Python functions

• There are (mainly) two types of functions in Python

✓ Built-in functions which are part of Python, such as
print(), int(), float(), etc

✓ Functions that we define ourselves and then use

• The names of built-in functions are usually considered
as new reserved words, i.e. we do not use them as
variable names

Function definition

• In Python, a function is some reusable code which can take
arguments as input, perform some computations, and then
output some results

• Functions are defined using reserved word def

• We call/invoke a function by using the function name,
parenthesis and arguments in an expression

Building our own functions

• We create a new function using the def key word, followed
by optional parameters in parenthesis

• We indent the body of the function

• This defines the function, but does not execute the body of
the function

A sample code

Program Output

A sample code

Program Output

Overview

Argument

• An argument is a value we pass into the function as its input
when we call the function

• We use arguments so we can direct the function to do different
kinds of work when we call it at different times

• We put the argument in parenthesis after the name of the
function

big = max(‘I am the one’)

argument

Parameters

• A parameter is a variable which we
use in the function definition that
is a ‘handle’ that allows the code
in the function to access the
arguments for a particular function
invocation

Return values

Program Output

• Often a function will take its arguments, do some computation and
return a value to be used as the value of the function call in the
calling expression. The return keyword is for this purpose.

Return values

• A fruitful function is one that
produces a result (or return
value)

• The return statement ends the
function execution and ‘sends
back’ the result of the function

Argument, parameter, and result

Argument

Parameter

Result

Multiple parameters/arguments

• We can define more than one
parameter in a function
definition

• We simply add more arguments
when we call the function

• We match the number and order
of arguments and parameters

Void functions

• When a function does not return a value, it is called a “void” function

• Functions that return values are “fruitful” functions

• Void functions are “not fruitful”

Functions without return

• When a function has
no return statement,
it will return None

Scope of variables

• The scope of a variable is the
part of program where this
variable can be accessed

• A variable created inside a
function is referred to as a
local variable

• Global variables are created
outside all functions and are
accessible to all functions in
their scope

Scope of variables

• Different variables may
share a name if they have
different scopes

Global variable

• In a function, you can use keyword
global to specify that a variable is a
global variable

• Be very careful when define and
use global variable

Default argument

• Python allows you to define functions with default argument values

• The default argument values will be passed to the function, when it is
invoked without arguments

Return multiple values

• Python allows a function to
return multiple values

• The sort function returns two
values; when it is invoked, you
need to pass the returned
values in a simultaneous
assignment

Practice

• Write a function to instruct the user to input the working
hours and hourly rate, and then return the salary. If the
working hours exceed 40 hours, then the extra hours
received 1.5 times pay.

Practice 2: Personal Income Tax

• A function, to get the tax for a given salary (excluded tax-free parts)
in a year.
• If the salary is less than 36000. It takes 3%

• If the salary is between 36000 and 144000, it takes 3% for the part less than
36000; 10% for the part between 36000 and 144000.

• ….

import matplotlib.pyplot as plt

def tax(salary):
if salary < 36000:

return salary * 0.03
elif salary < 144000:

return 36000 * 0.03 + (144000 - salary) * 0.1
elif salary < 300000:

return 36000 * 0.03 + (144000 - 36000) * 0.1 + (300000 - 144000) * 0.2 + (300000 - salary) * 0.25
elif salary < 420000:

return 36000 * 0.03 + (144000 - 36000) * 0.1 + (300000 - 144000) * 0.2 + (420000 - 36000) * 0.25 + (420000 - salary) * 0.3
elif salary < 660000:

return 36000 * 0.03 + (144000 - 36000) * 0.1 + (300000 - 144000) * 0.2 + (420000 - 36000) * 0.25 + (660000 - 420000) * 0.3 + (660000 - salary) * 0.35
elif salary < 960000:

return 36000 * 0.03 + (144000 - 36000) * 0.1 + (300000 - 144000) * 0.2 + (420000 - 36000) * 0.25 + (660000 - 420000) * 0.3 + (960000 -660000) * 0.35 + (960000 - salary) * 0.45
else:

return 36000 * 0.03 + (144000 - 36000) * 0.1 + (300000 - 144000) * 0.2 + (420000 - 36000) * 0.25 + (660000 - 420000) * 0.3 + (960000 -660000) * 0.35 + (salary - 960000) * 0.45

taxes = []
for s in range(0, 2000000, 10000):

the_tax = tax(s)
print(s, the_tax, s- the_tax)
taxes.append(the_tax)

plt.plot(range(0, 2000000, 10000),taxes)

String Methods

String type

• A string is a sequence of characters

• A string literal uses quotes ‘’ or “”

• For strings, + means “concatenate”

• When a string contains numbers, it is still a string

• We can convert numbers in a string into a number using int() or float()

Reading and converting

• We prefer to read data in using strings and then parse and convert
the data as we need

• This gives us more control over error situations and/or bad user
inputs

• Raw input numbers must be converted from strings

Looking inside strings

• We can get any character in a string
using an index specified in square
brackets

• The index value must be an integer
which starts from zero

• The index value can be an expression

Index out of range

• You will get a Python
error if you attempt to
index beyond the end of
a string

• Be careful when
specifying an index value

Alice

Strings have length

• There is a built-in function
len() which gives us the length
of a string

len() function

len() function

len() function

Looping through strings

• Using a for
statement, we can
easily loop
through each
character in a
string

• String is
essentially a list in
Python

Practice

•Write a program to use a while statement together
with len() function to loop through a given string.

Loop and counting

• This is a simple
statement that loops
through each letter in
a string and counts
the number of times
the loop encounters
the ‘a’ character

Look deeper into in

• The iteration variables “iterates”
through the sequence (ordered set)

• The block (body) of the loop is
executed once for each value in the
sequence

• The iteration variable moves through
all the values in the sequence

• The iteration variable loops through the string, and the body of the
loop is executed once for each character in that string

Using ‘in’ in conditional statement

• The in keyword can also be
used to check whether one
string is in another string

• The in expression is a logical
expression and returns True or
False

• It can be used in if or while
statement

Slicing strings

• We can also look at any continuous
section of a string using colon
operator

• The second number is one beyond
the end of the slice – i.e. “up to but
not including”

• If the second number is beyond the
length of the string, it stops at the
end

Slicing strings

• If we leave off the first
or second number of
the slice, it is assumed
to be the beginning or
end of the string
respectively

String library

• Python has a number of string
functions which are in the string
library

• These functions are built-into every
string, we invoke them by
appending the function to the
string variable

• These function do not modify the
original string, instead they return a
new string altered from the original
string

https://docs.python.org/3/library/stdtypes.html#string-methods

Searching a string

• We can use the find() function
to search for a substring in a
string

• find() finds the first occurrence
of the target sub-string

• If the sub-string is not found, it
returns -1

• Important: the string position
starts from 0

Making everything upper or lower
case
• You can convert a string

into upper case or lower
case

• Hint: often when we use
find() to find a substring,
we convert the original
string into lower case
first, so that we don’t
need to worry about
case

Search and replace

• The replace() function is
like a “search and
replace” operation in a
word processor

• It replaces all
occurrences of the
search string with the
replacement string

Stripping whitespace

• Sometimes we want to take a
string and remove whitespaces
at the beginning and/or end

• lstrip() and rstrip() to the left
and right only

• strip() removes both beginning
and ending whitespaces

Prefixes

• startswith() function
checks whether a string is
starting with a given
string

Example

File Operations

File processing

• A text file can be thought of as a sequence of lines

Opening files

• Before we can read the contents of a file, we must tell Python which
file we are going to work with and what we will do with that file

• This is done with the open() function

• Open() returns a “file handle” - a variable used to perform operations
on files

• Kind of like “File -> Open” in a word processor

Using open()

• handle = open(filename, mode)

• Returns a handle used to manipulate the file

• Filename is a string

• Mode is optional, use ‘r’ if we want to read the file, and ‘w’ if we
want to write to the file (‘r’, ‘w’, ‘a’, ‘r+’, ‘w+’, ‘a+’, more for binary
files …)

Handle

When files are missing

The newline character

• We use a new character to indicate
when a line ends called “newline”

• We represent it as ‘\n’ in strings

• Newline is still one character, not
two

File processing

• A text file can be thought of as a sequence of lines

• A text file has newline at the end of each line

File handle as a sequence

• A file handle open for read can
be treated as a sequence of
strings where each line in the file
is a string in the sequence

• We can use the for statement to
loop through a sequence

Practice

•Write a program to open a file and count how many
lines are included in this file

Reading the whole file

• We can read the whole file into a single string

Searching through a file

• We can put an if statement in the for loop to print the lines which
satisfy certain conditions

Writing to a file

• To write a file, use the open() function with ‘w’ argument

• Use the write() method to write to the file

Practice

Read a file and make all letters be lower-cased (to a new file).

	Slide 1: Introduction to Computer Science: Programming Methodology
	Slide 2
	Slide 3
	Slide 4: A Python Script
	Slide 5: A Python Script
	Slide 6: A Better Solution
	Slide 7: Stored (and reused) steps
	Slide 8: Python functions
	Slide 9: Function definition
	Slide 12: Building our own functions
	Slide 13: A sample code
	Slide 14: A sample code
	Slide 15: Overview
	Slide 16: Argument
	Slide 17: Parameters
	Slide 18: Return values
	Slide 19: Return values
	Slide 20: Argument, parameter, and result
	Slide 21: Multiple parameters/arguments
	Slide 22: Void functions
	Slide 23: Functions without return
	Slide 24: Scope of variables
	Slide 25: Scope of variables
	Slide 26: Global variable
	Slide 27: Default argument
	Slide 28: Return multiple values
	Slide 29: Practice
	Slide 30: Practice 2: Personal Income Tax
	Slide 31
	Slide 32
	Slide 33: String type
	Slide 34: Reading and converting
	Slide 35: Looking inside strings
	Slide 36: Index out of range
	Slide 37: Strings have length
	Slide 38: len() function
	Slide 39: len() function
	Slide 40: len() function
	Slide 41: Looping through strings
	Slide 42: Practice
	Slide 43: Loop and counting
	Slide 44: Look deeper into in
	Slide 45
	Slide 46: Using ‘in’ in conditional statement
	Slide 47: Slicing strings
	Slide 48: Slicing strings
	Slide 49: String library
	Slide 50: https://docs.python.org/3/library/stdtypes.html#string-methods
	Slide 51
	Slide 52: Searching a string
	Slide 53: Making everything upper or lower case
	Slide 54: Search and replace
	Slide 55: Stripping whitespace
	Slide 56: Prefixes
	Slide 57: Example
	Slide 58
	Slide 59
	Slide 60: File processing
	Slide 61: Opening files
	Slide 62: Using open()
	Slide 63: Handle
	Slide 64: When files are missing
	Slide 65: The newline character
	Slide 66: File processing
	Slide 67: File handle as a sequence
	Slide 68: Practice
	Slide 69: Reading the whole file
	Slide 70: Searching through a file
	Slide 71: Writing to a file
	Slide 72: Practice

